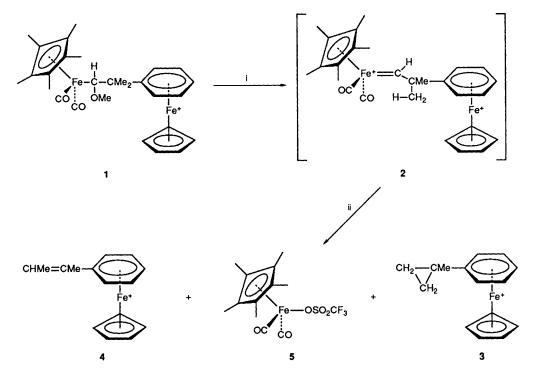
Intramolecular Cyclopropane Formation by Insertion of an Iron–Carbene Species into a C–H Bond


Véronique Guerchais* and Sourisak Sinbandhit^b

^a Laboratoire de Chimie des Organométalliques, URA, CNRS 415

^b Centre Régional de Mesures Physiques de l'Ouest (CRMPO) Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France

The bimetallic carbene complex $[Cp*Fe(CO)_2(\mu-\eta^1,\eta^6-CHCMe_2C_6H_5)FeCp][PF_6]_2 \mathbf{2}$, spectroscopically observed by ¹H NMR at -80 °C, undergoes intramolecular C–H insertion to give $[CpFe(\eta^6-1-phenyl-1-methylcyclopropane)][PF_6] \mathbf{3}$.

Insertion of a carbene fragment into a carbon-hydrogen bond is one among the carbene-transfer reactions that play a pivotal role in organic synthesis.¹ However, examples of metalcarbene complexes are still very rare,^{2,3} since $Fp(carbene)^+$ [$Fp=(C_5H_5)Fe(CO)_2$] complexes are known to rearrange rapidly by β -to- α hydrogen or carbon shift affording the corresponding Fp(η^2 -alkene)⁺ complexes.^{4,5} We are developing⁶ the study of new dinuclear iron₂ (η^1 -carbene) complexes in which one of the carbene substituents, *i.e.* a phenyl group, it π -coordinated to a different iron centre. Such a complexation

Scheme 1 Reagents and conditions: i, CH₂Cl₂, -80 °C, CF₃SO₃SiMe₃; ii, CH₂Cl₂, -40 °C. Spectroscopic ratio 3:4 = 75:25.

of the arene should inhibit the facile 1,2-phenyl migration and, therefore, lead to new rearrangement processes. We report here an intramolecular carbene C-H bond insertion from such a species, leading to a complex containing cyclopropane.

The syntheses of the precursor di-iron complexes are easily achieved by an electrophilic ligand coupling reaction from two mononuclear species. Thus, the complex [Cp*Fe(CO)₂-{ μ - η , η ⁶-CH(OMe)CMe₂C₆H₅}FeCp][PF₆] 1† [Cp*=(η ⁵-C₅Me₅)] is obtained in 50% yield by electrophilic addition of [Cp*Fe(CO)₂(CHOMe)][PF₆]⁷ on [CpFe(η ⁵-C₆H₅CMe₂)].⁸‡ The dicationic carbene complex [Cp*Fe(CO)₂(μ - η 1, η ⁶-CHCMe₂C₆H₅)FeCp]²⁺ 2† is then generated by treatment of the α -methoxy compound 1 with Me₃SiOSO₂CF₃ at -80 °C in CH₂Cl₂. The dication 2 is stable in CD₂Cl₂ solution up to -40 °C, as indicated by the slow disappearance of the low-field resonance due to the carbene proton at δ 16.12 ppm in the ¹H NMR spectrum. When the reaction is performed on

a 1 mmol scale under similar conditions, the rearrangement products of **2** are obtained. namely [CpFe(n⁶- $C_6H_5CMeCH_2CH_2)$ [PF₆] 3,† $[CpFe(\eta^{6}-C_{6}H_{5}CMe=CH-$ Me)][PF₆] 4,† and [Cp*Fe(CO)₂(OSO₂CF₃)] 5.7 The cationic compounds 3 and 4, cleanly separated from the red soluble compound 5 by addition of diethyl ether, are thus isolated in a quantitative yield. ¹H NMR analysis of the crude reaction product shows that 3 and 4 are respectively formed in a ratio of 75: 25 as in the ¹H NMR experiment (based on the integration of the methyl resonances). Pure compound 3 is then isolated as a yellow powder (42%) by crystallisation in CH_2Cl_2 . In the proton coupled ¹³C NMR spectrum of 3, the equivalent methylene carbons of the cyclopropyl ring give rise to an upfield triplet at δ 20.1 ppm (${}^{1}J_{C-H}$ 161 Hz). The formation of the cyclization product 3 arises from an intramolecular insertion of the carbene fragment into the γ -C–H bond (with respect to the two iron centres); the $Cp*Fe(CO)_2^+$ fragment, thus released, is recovered as the triflate adduct 5 (Scheme 1). Side 1,2-methyl migration reaction affords the alkenylbenzene complex 4 in a minor amount. We did not observe any $Fe_2(\eta^2, \eta^6$ -alkenylbenzene) intermediate, the labile alkene ligand probably being displaced by the coordinating $CF_3OSO_2^-$ anion.

Coordination of the aromatic ring by the CpFe⁺ moiety induces a dramatic change in the reactivity of the carbene species. The related mononuclear carbene complex $[Fp(=CHCMe_2Ph)]^+$ has been reported to undergo 1,2-phenyl migration to give $[Fp(\eta^2-CHPh=CMe_2)]^{+.5}$ In the present case, the phenyl shift is inhibited by its complexation, an unprecedented feature. This bimetallic system, in which the carbene fragment is still highly reactive owing to its η^1 -coordination mode, allows a facile C–H insertion reaction leading to the formation of a C₃ ring. Moreover, the CpFe⁺ unit can be regarded as a trap for the reaction products resulting from the carbene transfer reaction; this allows a better handling and characterisation of the species especially in the case of volatile organic compounds.

[†] Selected spectroscopic data: for 1: ¹H NMR (CD₂Cl₂) δ 6.17 (m, Ph), 4.93 (s, 5H, C₅H₅), 3.55 (s, 1H, CH), 2.63 (s, 3H, OMe), 1.71 (s, 15H, C₅Me₅), 1.51 (s, 3H, Me), 1.41 (s, 3H, Me). ¹³C{¹H} NMR (CD₃CN) δ: 223.2 (CO), 218.0 (CO), 101.2 (CHOMe), 97.5 (C₅Me₅), 76.7 (C₅H₅), 59.1 (OMe), 48.5 (CMe₂), 27.6 (Me), 23.8 (Me), 10.1 (C₅Me₅). For 2: ¹H NMR (CD₂Cl₂, -80 °C) δ: 16.12 (s, 1H, =CH), 643 (m, Ph), 5.14 (s, 5H, Cp), 1.90 (s, 15H, C₅Me₅), Me obscured by C₅Me₅. For 3: ¹H NMR (CD₃CN) δ: 6.14 (m, 3H, Ph), 6.03 (m, 2H, Ph), 4.96 (s, 5H, C₅H₅), 1.52 (s, 3H, Me), 1.14 (m, 2H, cyclopropyl CHCH), 1.08 (m, 2H, cyclopropyl CHCH). ¹³C{¹H} NMR (CD₃CN) δ: 115.2 (C₆ ipso), 88.0 (C₆ ring), 87.1 (C₆ para), 84.9 (C₆ ring), 77.3 (C₅H₅), 22.7 (Me), 20.1 (CH₂), 18.3 (quaternary cyclopropyl C). For 4: ¹H NMR (CD₃CN) δ: 6.31 (qq, ³J_{H+H} 7, ⁴J_{H-H} 1 Hz, 1H, =CH), 6.16-6.04 (2 × m, Ph), 4.92 (s, 5H, C₅H₅), 2.11 (m, 3H, =CPhMe), 1.84 (dq, ³J_{H+H} 7, ⁵J_{H+H} 1 Hz, 3H, =CHMe). Satisfactory elemental analyses were obtained for 1 and 3.

[‡] The precursor complex $[CpFe(Pr^{i}C_{6}H_{5})][PF_{6}]$ was kindly provided by Dr J.-R. Hamon.

We are continuing to examine the mechanism of the above reaction and the synthetic utility of these new bimetallic carbene complexes.

Sincere thanks to Drs J.-R. Hamon and C. Lapinte (Université de Rennes) for pertinent discussions.

Received, 24th July 1990; Com. 0/03364B

References

1 M. P. Doyle, Chem. Rev., 1986, 86, 919, and references cited therein.

- 2 An elegant example from iron-carbene complexes has been recently described: S.-K. Zhao, C. Knors and P. Helquist, J. Am. Chem. Soc., 1989, 111, 8527.
- 3 H. Fischer, J. Schmid and R. Markl, J. Chem. Soc., Chem. Commun., 1985, 572.
- 4 R. S. Bly, R. Wu and R. K. Bly, Organometallics, 1990, 9, 936; R. S. Bly, R. K. Bly, M. M. Hossain, L. Lebioda and M. Raja, J. Am. Chem. Soc., 1988, 110, 7723; R. S. Bly, G. S. Silverman and R. K. Bly, J. Am. Chem. Soc., 1988, 110, 7730, and references cited therein.
- 5 R. S. Bly and R. K. Bly, J. Chem. Soc., Chem. Commun., 1986, 1046.
- 6 V. Guerchais, J. Chem. Soc., Chem. Commun., 1990, 534.
- 7 V. Guerchais, C. Lapinte, J.-Y. Thépot and L. Toupet, Organometallics, 1988, 7, 604.
- 8 J.-R. Hamon and D. Astruc, Organometallics, 1988, 5, 1036.